Accurate Anomaly Detection using Adaptive Monitoring and Fast Switching in SDN

نویسندگان

  • Gagandeep Garg
  • Roopali Garg
چکیده

Software defined networking (SDN) is rapidly evolving technology which provides a suitable environment for easily applying efficient monitoring policies on the networks. SDN provides a centralized control of the whole network from which monitoring of network traffic and resources can be done with ease. SDN promises to drastically simplify network monitoring and management and also enable rapid innovation of networks through network programmability. SDN architecture separates the control of the network from the forwarding devices. With the higher innovation provided by the SDN, security threats at open interfaces of SDN also increases significantly as an attacker can target the single centralized point i.e. controller, to attack the network. Hence, efficient adaptive monitoring and measurement is required to detect and prevent malicious activities inside the network. Various such techniques have already been proposed by many researchers. This paper describes a work of applying efficient adaptive monitoring on the network while maintaining the performance of the network considering monitoring overhead over the controller. This work represents effective bandwidth utilization for calculation of threshold range while applying anomaly detection rules for monitoring of the network. Accurate detection of anomalies is implemented and also allows valid users and applications to transfer the data without any restrictions inside the network which otherwise were considered as anomalies in previous technique due to fluctuation of data and narrow threshold window. The concept of fast switching also used to improve the processing speed and performance of the networks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Query Rate for Anomaly Detection with SDN

In traditional approach, extracting important features for the application to analyze the anomaly detection problem, introduce significant overhead on the way of switch handling. Furthermore, high volumes of network traffic introduce notable issues that affect the performance and anomaly detection accuracy. Taking advantage of centralized control plane of Software Defined Networking (SDN), the ...

متن کامل

Efficient Anomaly Detection Using Adaptive Monitoring in SDN

Network monitoring and measurement is the key task in today’s networking scenarios due to increasing low-level intrusions. With the increase in utilization of resources and wider network bandwidth gateway for intruders also enlarges. Hence to detect the anomalies entered by the intruders inside our network a better anomaly detection mechanism must need to be implemented. Also software-defined n...

متن کامل

Neural Network Based Protection of Software Defined Network Controller against Distributed Denial of Service Attacks

Software Defined Network (SDN) is a new architecture for network management and its main concept is centralizing network management in the network control level that has an overview of the network and determines the forwarding rules for switches and routers (the data level). Although this centralized control is the main advantage of SDN, it is also a single point of failure. If this main contro...

متن کامل

F-STONE: A Fast Real-Time DDOS Attack Detection Method Using an Improved Historical Memory Management

Distributed Denial of Service (DDoS) is a common attack in recent years that can deplete the bandwidth of victim nodes by flooding packets. Based on the type and quantity of traffic used for the attack and the exploited vulnerability of the target, DDoS attacks are grouped into three categories as Volumetric attacks, Protocol attacks and Application attacks. The volumetric attack, which the pro...

متن کامل

Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT

Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015